Tuberculosis in Pregnancy

Amita Gupta MD MHS
Associate Professor of Medicine and International Health
Johns Hopkins University
March 26, 2015

Maryland Department of Health & Mental Hygiene
State Center for TB Control and Prevention
Disclosures

• No conflicts of interest to disclose

• I receive grant funding from the
 – US NIH (NIAID, NICHD, Fogarty, CFAR)
 – US CDC
 – Indian Department of Biotechnology and Indian Council of Medical Research
 – Foundations (Gilead, Wyncote, Ujala)

• Any opinions expressed are my own and not of any of my sponsors.
Overview

• Global TB burden and epidemiology
• Impact on maternal-child health outcomes
• Screening for active and latent TB infection (LTBI) in pregnancy/postpartum
• Treatment
Learning Objectives

• To discuss the epidemiology and clinical outcomes of TB in pregnancy

• To discuss screening and diagnosis for TB in pregnancy

• To discuss treatment of TB in pregnancy and highlight some research gaps
Historical perspective

• Hippocrates
 – Pregnancy improves the outcome of pthisis (tuberculosis)

• 1850-1920s
 – TB harmful during pregnancy, termination recommended

• Modern era
 – First-line drugs safe, treat TB
 – MDR TB, abortion offered
What is the burden of TB in pregnancy?
TUBERCULOSIS IN WOMEN

• 2014
 – >500,000,000 latently infected
 – 3.3 million with active TB (37% of global burden)
 – 510,000 died (180,000 HIV-infected)
 – 50% of HIV-related TB deaths
 – 67% of cases Africa and SE Asia
 – More than 50% of female TB cases went undetected

WHO Global TB Report 2014
TB Case Rates by Age Group and Sex, United States, 2013

Cases per 100,000

Under 5 5 - 14 15 - 24 25 - 44 45 - 64 ≥65

Male Female

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Number of TB Cases in U.S.-born vs. Foreign-born Persons, United States, 1993–2013*

*Updated as of June 11, 2014.
Reported TB Cases by Origin and Race/Ethnicity,*
United States, 2013

*All races are non-Hispanic. Persons reporting two or more races accounted for less than 1% of all cases.
** American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander accounted for less than 1% of foreign-born cases and are not shown.
Pediatric TB—Background

• Definition of pediatric tuberculosis (TB): TB disease in a person < 15 years old

• In 2012:
 • 9,945 TB cases were reported among all age groups
 • 486 (4.9%) were pediatric

<table>
<thead>
<tr>
<th>Age Group</th>
<th>N</th>
<th>Percent out of all age groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 4 years</td>
<td>260</td>
<td>2.6%</td>
</tr>
<tr>
<td>5 – 14 years</td>
<td>226</td>
<td>2.3%</td>
</tr>
</tbody>
</table>
Number and Percent of Pediatric TB Cases by U.S. and Foreign Birth, 1993–2012
Peak TB incidence in women of reproductive age irrespective of HIV

Sub-Saharan African Women

- Women 15-24 years have TB rates 1.5-2-fold higher than men

India

- Female case notification rate
- Male case notification rate

Deluca JAIDS 2009

RNTCP: Gender differentials in TB control 2004
Extrapulmonary TB (EPTB) more prevalent in women

• US 253,299 cases, 73.6% were PTB and 18.7% were EPTB. Compared with PTB, EPTB was associated with female sex (OR 1.7; 95% CI, 1.7-1.8)

• Being female identified as independent risk factor for EPTB

(Lin IJTLD 2009; Yang CID 2004; Kingkaew IJID 2009; Lowieke EID 2006)
Prevalence of TB in pregnancy

- No national reporting for high or low burden countries
- Data based on individual screening studies

Active TB

<table>
<thead>
<tr>
<th>Study Site</th>
<th>HIV-negative</th>
<th>HIV-positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low burden countries</td>
<td>0.06-0.25%</td>
<td>1%</td>
</tr>
<tr>
<td>High-burden countries</td>
<td>0.07-0.53%</td>
<td>0.69-11%</td>
</tr>
</tbody>
</table>

Latent TB

<table>
<thead>
<tr>
<th>Study Site</th>
<th>HIV-negative</th>
<th>HIV-positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low burden countries</td>
<td>10-23%</td>
<td>11-26%</td>
</tr>
<tr>
<td>High-burden countries</td>
<td>18-34%</td>
<td>21-49%</td>
</tr>
</tbody>
</table>

Mathad & Gupta, CID 2012
Prevalence of TB disease in HIV-infected pregnant women in high burden settings

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>N</th>
<th>Prevalence (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pillay</td>
<td>2001</td>
<td>S. Africa</td>
<td>14650</td>
<td>0.8 (0.6, 0.9)</td>
</tr>
<tr>
<td>Kalli</td>
<td>2006</td>
<td>S. Africa</td>
<td>370</td>
<td>2.2 (0.9, 4.2)</td>
</tr>
<tr>
<td>TiPs*</td>
<td>2014</td>
<td>Kenya</td>
<td>288</td>
<td>2.4 (0.1, 4.2)</td>
</tr>
<tr>
<td>Hoffman*</td>
<td>2013</td>
<td>S. Africa</td>
<td>1415</td>
<td>2.5 (1.7, 3.4)</td>
</tr>
<tr>
<td>Jonnalagadda</td>
<td>2010</td>
<td>Kenya</td>
<td>393</td>
<td>2.8 (1.4, 4.9)</td>
</tr>
<tr>
<td>Gupta</td>
<td>2007</td>
<td>India</td>
<td>715</td>
<td>3.4 (2.2, 4.9)</td>
</tr>
<tr>
<td>Modi* (unpub)</td>
<td>2014</td>
<td>Kenya</td>
<td>134</td>
<td>6.0 (2.6, 11.4)</td>
</tr>
<tr>
<td>Gounder</td>
<td>2011</td>
<td>S. Africa</td>
<td>1427</td>
<td>0.6 (0.4, 0.7)</td>
</tr>
<tr>
<td>Leroy</td>
<td>1995</td>
<td>Rwanda</td>
<td>211</td>
<td>7.9 (4.8, 12.6)</td>
</tr>
<tr>
<td>Sheriff</td>
<td>2010</td>
<td>Tanzania</td>
<td>396</td>
<td>10.0 (1.2, 31.7)</td>
</tr>
<tr>
<td>Nachega</td>
<td>2003</td>
<td>S. Africa</td>
<td>120</td>
<td>11.0 (5.9, 17.8)</td>
</tr>
</tbody>
</table>

*Culture obtained independent of symptoms

Prevalence: 0.6-11%

Slide courtesy of Sylvia LaCourse, Univ of Washington
Global estimate of TB in pregnancy

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean (95% uncertainty range)</th>
<th>Rate per 1000 pregnant women (95% uncertainty range)</th>
<th>Percentage of global burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>All countries combined</td>
<td>216 500 (192 100–247 000)</td>
<td>2.1 (1.8–2.4)</td>
<td>..</td>
</tr>
<tr>
<td>African Region</td>
<td>89 400 (74 200–110 500)</td>
<td>3.6 (3.0–4.5)</td>
<td>41%</td>
</tr>
<tr>
<td>Region of the Americas</td>
<td>4 800 (3 900–6 000)</td>
<td>0.4 (0.3–0.5)</td>
<td>2%</td>
</tr>
<tr>
<td>Eastern Mediterranean Region</td>
<td>28 500 (19 700–41 900)</td>
<td>2.3 (1.6–3.4)</td>
<td>13%</td>
</tr>
<tr>
<td>European Region</td>
<td>4 900 (3 800–6 300)</td>
<td>0.6 (0.5–0.8)</td>
<td>2%</td>
</tr>
<tr>
<td>South-East Asia Region</td>
<td>67 500 (52 000–87 100)</td>
<td>2.4 (1.9–3.1)</td>
<td>31%</td>
</tr>
<tr>
<td>Western Pacific Region</td>
<td>21 400 (19 400–23 700)</td>
<td>1.1 (1.0–1.2)</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 2: Total number of active tuberculosis cases in pregnant women, rate per 1000 pregnant women and percentage of global burden by WHO region and combined

Based on total population, crude birth rate, age distribution, TB case notification by age/sex

Sugarman, Lancet Global Health 2014
Impact of Maternal TB on maternal-infant outcomes?
Risk of complications in pregnancy
TB vs. no TB

Maternal complications

• Pre-eclampsia & eclampsia (2 fold)
• Vaginal bleeding (2 fold)
• Hospitalization (12 fold)
• Miscarriage (10 fold)

Jana Int J Gyn Obstet 1994
Jana NEJM 1999
Chin HC BJOG 2010
Bjerkedal 1975
Bothalmley 2001
Pillay Lancet ID 2000;
Mathad CID 2012
TB Disease is a Leading Cause of Maternal Mortality in Women With and Without HIV Co-infection

- 50,518 deliveries in Durban, South Africa 1996-1998; there were 101 maternal deaths for overall mortality 200 per 100,000 deliveries.

- Mortality by HIV infection and TB disease status:

<table>
<thead>
<tr>
<th>HIV Infection Status</th>
<th>All</th>
<th>Tuberculosis Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-infected</td>
<td>323</td>
<td>12,170</td>
</tr>
<tr>
<td>HIV-uninfected</td>
<td>149</td>
<td>3,850</td>
</tr>
</tbody>
</table>

RR of maternal death was 3.2 higher for TB/HIV vs TB alone

Khan M et al. AIDS 2001;15:1857-63
Risk of complications in pregnancy
TB vs. no TB

Fetal and infant complications

• Fetal death (increased)
• Low birth weight (2 fold)
• Lower Apgar scores
• Prematurity (2 fold)
• Small for gestational age (2 fold)
• Perinatal death (increased)
• congenital TB (rare)
• Increased HIV transmission (2 fold)

Jana Int J Gyn Obstet 1994
Jana NEJM 1999
Chin HC BJOG 2010
Khan AIDS 2001;
Pillay Lancet ID 2000;
Gupta JID 2011
MTCT of TB

• **In utero**
 – Hematogenous dissemination via the umbilical vein
 – Aspiration/ingestion of infected amniotic fluid

• **Intrapartum**
 – Aspiration/ingestion of infected amniotic fluid or genital secretions

• **Postpartum**
 – Inhalation/ingestion of respiratory droplets from the mother
 – Ingestion of infected breast milk
Congenital TB

• Rare, ≈300 reports in the literature

• Old data suggest prevalence <1% for offspring of untreated mothers (Beitzke 1935, Hedvall 1953)

• Risk factors include maternal disseminated TB and diagnosis made close to delivery, maternal genital tract TB

• Cantwell criteria for diagnosis (infant proven TB lesions and one of the following: 1) 1st wk of life; 2) hepatic complex/granulomas; 3) maternal genital tract or TB in placenta; 4) exclusion of postnatal contacts (including hospital staff)

Smith 2002; Starke 1997; Cantwell 1994; Whittaker 2008
Postpartum TB important causes maternal and infant mortality in HIV infected women

- HIV-infected mothers have 10-fold increase in TB.

- Maternal TB/HIV increased risk of postpartum mortality by 2.2 fold and probability of infant death by 3.4 fold.

715 HIV-infected pregnant women in Pune, India

TB incidence 5/100 pt-yr (24 of 715 HIV+ women)
Does pregnancy or the postpartum period increase the risk of TB acquisition? reactivation? severity?
Pregnancy-associated immune changes are biologically significant

- Systemic immunomodulation that simultaneously embraces cellular immunosuppression, immunotolerance to various antigens, and enhanced inflammatory response.

Improved course of multiple sclerosis and rheumatic arthritis

Aggravated systemic lupus erythematosus

↑ risk of plasmodium falciparum malaria, listeriosis, HIV

↑ severity of influenza, hepatitis E, HSV, malaria, measles, smallpox, varicella, coccidiomycosis

Adapted from Kourtis NEJM 2014

Common risk factors for progression of LTBI to disease

<table>
<thead>
<tr>
<th>Risk Factor (study)</th>
<th>Relative risk % (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced, untreated HIV (Moss) (Pablos-Mendez)</td>
<td>9.9 (8.7-11)</td>
</tr>
<tr>
<td></td>
<td>9.5 (3.6-25)</td>
</tr>
<tr>
<td>Close contact (Ferebee)</td>
<td>6.1 (5.5-6.8)</td>
</tr>
<tr>
<td>Chest Xray of untreated old healed TB (Ferebee)</td>
<td>5.2 (3.4-8.0)</td>
</tr>
<tr>
<td>Prednisone ≥ 15mg/d (Jick)</td>
<td>2.8 (1.7-4.6)</td>
</tr>
<tr>
<td>Chronic renal failure (Pablos-Mendez)</td>
<td>2.4 (2.1-2.8)</td>
</tr>
<tr>
<td>TNF-α inhibitor (Askling)</td>
<td>2.0 (1.1-3.5)</td>
</tr>
<tr>
<td>Poorly controlled Diabetes mellitus (Pablos-mendez)</td>
<td>1.7 (1.5-2.2)</td>
</tr>
<tr>
<td>Weight $\geq 10%$ below normal (Palmer)</td>
<td>1.6 (1.1-2.2)</td>
</tr>
<tr>
<td>Smoking (Bates)</td>
<td>1.5 (1.1-2.2)</td>
</tr>
<tr>
<td>Pregnancy (Good, Carter, Espinal)</td>
<td>Limited data; mixed findings</td>
</tr>
</tbody>
</table>

Risk of TB in Pregnancy: UK primary care cohort

Impact on TB reactivation and severity debated
Clinical data limited and were not consistent or convincing (Good Am. J. Obstet. Gynecol 1981, Carter Chest 1994, Espinal 1996;Sterling 2007)

- 192,801 women enrolled 1996-2008
- with 264,136 pregnancies
- Mean f/up 9.1 years, 1,745,834 PY
- 177 TB events; postpartum
- 15.4 vs 9.1/100,000 PY

IRR 1.95 Postpartum TB

The adjusted incidence rate ratios for different pregnancy and post-partum periods from the self controlled case series model (adjusted for age and period). Bars denote 95% confidence intervals. Reference is the time outside of pregnancy (IRR 1), denoted by the x axis line.
Biological plausibility?
Immunology of pregnancy & TB

Th1 suppression

Adapted from Sykes, Mediators Inflamm 2012
Does pregnancy impact performance of screening for active or latent TB?
TB diagnostic sensitivity of WHO 4-symptom screen in pregnancy

At least one WHO 4-symptom in 9-19% of women

Compared to non-pregnant HIV infected adults

- Lower sensitivity observed but not clear if that is due to pregnancy alone
- High negative predictive value (NPV) BUT
- High prevalence of undiagnosed asymptomatic TB (HoffmanPLOS One 2013, #822)

TIPS data courtesy of LaCourse and Cranmer, UW
Comparison of the estimated mean fetal absorbed dose from various radiographic and computed tomographic (CT) procedures

Radiological Society of North America, 2007
Screen for latent TB?

- **Goal of Latent TB screening**
 - Identify those at highest risk for reactivation disease
 - Target preventive therapy

- **Implementation challenges**

- **Little attention paid to performance of latent TB diagnostics in pregnant/postpartum women in era of HIV**

- **Mixed data**
 - Two US studies of IGRA (Quantiferon) test positivity was lower than TST (older age, foreign birth associated with positivity) \((\text{Worjohol et al Obstet Gynecol 2011; Chebab Kansas J Med 2010})\)
 - India, more Quantiferon positive than TST and discordance QGIT+/TST- was higher \((\text{Mathad, PLOS One 2014})\)

- **Positive IGRA predictive of active TB postpartum** \((\text{Jonalagadda JID 2010, IJTL 2013})\)
Prevalence of LTBI in US (TST)

<table>
<thead>
<tr>
<th>Group and Study</th>
<th>Expected prevalence % (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US national sample (NHANES 2000)</td>
<td>4.2</td>
</tr>
<tr>
<td>Foreign born (Bennett)</td>
<td>18.7 (13.5-25.2)</td>
</tr>
<tr>
<td>Close contacts (Marks)</td>
<td>37.1 (35.7-38.5)</td>
</tr>
<tr>
<td>Homeless</td>
<td></td>
</tr>
<tr>
<td>Kong</td>
<td>12.8 (12.2-13.5)</td>
</tr>
<tr>
<td>Moss</td>
<td>32.4 (30.5-34.4)</td>
</tr>
<tr>
<td>Injection drug users</td>
<td></td>
</tr>
<tr>
<td>Riley</td>
<td>16.1 (12.5-22.4)</td>
</tr>
<tr>
<td>Grimes</td>
<td>27.7 (19.3-37.5)</td>
</tr>
<tr>
<td>Brassard</td>
<td>22.4 (17.7-28.5)</td>
</tr>
<tr>
<td>Salomon</td>
<td>14.0 (11.4-17.1)</td>
</tr>
<tr>
<td>Prisoners (Lobato)</td>
<td>17.0 (16.8-17.1)</td>
</tr>
<tr>
<td>US born, no other risk (Bennett)</td>
<td>1.8 (1.4-2.1)</td>
</tr>
<tr>
<td>Pregnant women</td>
<td></td>
</tr>
<tr>
<td>Nolan (n=1621, LA)</td>
<td>11.0</td>
</tr>
<tr>
<td>Mofenson (n=46,HIV+)</td>
<td>25.5</td>
</tr>
<tr>
<td>Schulte (n=176 HIV+ FL)</td>
<td>50.3</td>
</tr>
<tr>
<td>Sackoff (n=678 foreign born, NYC)</td>
<td></td>
</tr>
</tbody>
</table>

TST vs IGRA: US studies

<table>
<thead>
<tr>
<th>Publication</th>
<th>N</th>
<th>Sociodemo</th>
<th>trimester</th>
<th>results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worjoloh Ob & Gyn 2011 San Fran</td>
<td>220 pregnant 199 had TST read</td>
<td>71% Hispanic 65% FB</td>
<td>71% 1<sup>st</sup>, 22% 2<sup>nd</sup>, 7% 3<sup>rd</sup></td>
<td>45 discordant Kappa 0.26 (72% TST+/QGIT-) BCG at birth a/w TST+</td>
</tr>
<tr>
<td>Lighter-Fisher Ob & Gyn 2012 NYC</td>
<td>140 pregnant and 140 non-pregnant</td>
<td>79% Hispanic 41% FB 0 HIV+ 40% BCG 90% risk factor for exp Mtb</td>
<td>31% 1<sup>st</sup>, 15% 2<sup>nd</sup>, 54% 3<sup>rd</sup></td>
<td>21% TST+ 6% indeterminant 97% concordant negative Kappa 0.45 2%TST-/QGIT+</td>
</tr>
<tr>
<td>Chehab Kansan J Med 2010 Kansas</td>
<td>102 pregnant 50 non-pregnant</td>
<td>87% Hispanic</td>
<td>Not provided</td>
<td>3% concordant positive 88% concordant negative 9% discordant</td>
</tr>
</tbody>
</table>
TST vs IGRA positivity rates: When women screened and which latent TB diagnostic test used matters

Cross-sectional TST vs QGIT positivity rate

N=450 HIV-negative women in India

Mathad et al PLOS One 2014
Does pregnancy impact TB treatment and prevention?
Physiology Changes of Pregnancy Can Significantly Impact Drug Metabolism, Safety and Efficacy

- Increased body fat
- Increased total body weight
- Decreased albumin
- Hepatic metabolism
 - Increased CYP3A4
 - Decreased CYP1A2 and CYP2C19

Frederiksen, Sem Perinatol 2001; Anderson, Clin Pharmacokinetics 2005
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A</td>
<td>Adequate and well-controlled human studies demonstrate no risk.</td>
</tr>
<tr>
<td>Category B</td>
<td>Animal studies demonstrate no risk, but no human studies have been performed. OR Animal studies demonstrate a risk, but human studies have demonstrated no risk.</td>
</tr>
<tr>
<td>Category C</td>
<td>Animal studies demonstrate a risk, but no human studies have been performed. Potential benefits may outweigh the risks.</td>
</tr>
<tr>
<td>Category D</td>
<td>Human studies demonstrate a risk. Potential benefits may outweigh the risks.</td>
</tr>
<tr>
<td>Category X</td>
<td>Animal or human studies demonstrate a risk. The risks outweigh the potential benefits.</td>
</tr>
</tbody>
</table>
Importance of studying TB/HIV drugs in pregnancy: INH and EFV example

The population PK model post-hoc estimates were used to predict individual C_{min}

<table>
<thead>
<tr>
<th></th>
<th>Pre/intrapartum (n=73)</th>
<th>6 weeks Post-partum (n=75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{min} (mg/L)*</td>
<td>1.35 (0.90-2.07)</td>
<td>2.00 (1.40-3.59)</td>
</tr>
<tr>
<td>% with $C_{\text{min}}<1$ mg/L</td>
<td>27%</td>
<td>13%</td>
</tr>
</tbody>
</table>

- Pregnancy modestly reduces EFV exposures, even after adjusting for weight, and proportion of women with EFV $C_{\text{min}}<1$ mcg/mL higher in pregnancy than postpartum
 - especially in extensive CYP2B6 metabolizers
- TB treatment that includes INH and RIF doesn’t reduce EFV concentrations, but EFV exposures higher in patients with slow NAT2 genotype taking INH
- No increased HIV MTCT noted

*Median (IQR)

Dooley et al., JID 2014 TSHIEPO study
<table>
<thead>
<tr>
<th>Drug</th>
<th>FDA</th>
<th>Crosses placenta</th>
<th>Breast-feeding</th>
<th>Issues in pregnant women</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH</td>
<td>C</td>
<td>Yes</td>
<td>Yes</td>
<td>Hepatotoxicity</td>
</tr>
<tr>
<td>Rifampin</td>
<td>C</td>
<td>Yes</td>
<td>Yes</td>
<td>Drug interactions with NVP, PIs, OCPs; may require Vit K</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>B</td>
<td>Unk</td>
<td>Unk</td>
<td>Drug interactions with PIs, limited experience</td>
</tr>
<tr>
<td>EMB</td>
<td>B</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PZA</td>
<td>C</td>
<td>Unk</td>
<td>Unk</td>
<td>Different guidance</td>
</tr>
</tbody>
</table>

References: Brost Obstet Gyn Clin 1997; Bothamley Drug Safety 2001; Shin CID 2003; Micromedex; Mathad & Gupta CID 2012
Treatment of Active Pulmonary TB in Pregnancy

<table>
<thead>
<tr>
<th></th>
<th>Low Burden(^1)</th>
<th>High Burden(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV negative</td>
<td>INH 5mg/kg/d x 9 mo RIF 10mg/kg/d x 9mo EMB wt-based x 2 mo B6 25mg/d x 9 mo</td>
<td>INH 5 mg/kg/d x 6 mo RIF 10 mg/kg/d x 6 mo EMB 15mg/kg/d x 2 mo PZA 25mg/kg/d x 2 mo B6 10-25mg/d x 6 mo</td>
</tr>
<tr>
<td>HIV positive</td>
<td>INH 300 mg/d x 6 mo RIF 600 mg/d x 6 mo EMB wt-based x 2mo PZA wt-based x 2 mo B6 25mg/d x 6 mo</td>
<td>INH 5 mg/kg/d x 6 mo RIF 10 mg/kg/d x 6 mo EMB 15mg/kg/d x 2 mo PZA 25mg/kg/d x 2 mo B6 10-25mg/d x 6 mo</td>
</tr>
</tbody>
</table>

LACTATION
- CDC encourages breastfeeding if no longer infectious; WHO once smear negative

DIFFERENCE IN PZA guidance

1 CDC, ATS, IDSA guidelines
2 WHO, British thoracic Society, RNTCP and IUATLD guidelines

Treatment of EPTB involves same drugs but most experts recommend 9-12 mo for TBM (but include PZA plus steroids) or bone/joint infections
MDR TB in pregnancy

- Treatment guidelines similar to non-pregnant adults
 - Individualized treatment vs public health approach
 - At least 4 new agents
 - Favor injectable after delivery
 - Lactation little to no data so often not recommended

- >57 published case reports (Gach 1999; Shin 2003; Nitta 1999; Lessnau 2003; Tabarsi 2007; Khan 2007; Palacios 2009; Toro 2011)
 - 3 case series describes 4 cases HIV+ (Khan 2007; Palacios 2009, Toro 2011)
 - US, Italy, Peru, Iran, South Africa

- Regimens: variable

- Outcomes: case series suggest treatment success possible
Case

- 5 week old infant with HIV-infected mother presenting with failure to thrive
 - Delivered in the hospital without incident
 - Intrapartum Nevirapine given
 - HIV viral load negative
 - Had been gaining weight for first 2-3 weeks, but now fussy and weight has plateaued
 - No fever
Case

• Mother had developed cough at the end of the pregnancy but not productive, no fevers or shortness of breath
 – Cough has persisted and is now occasionally productive
 – No shortness of breath, but some fatigue

• SH: lives in an urban slum in a joint family setting (5 adults, 8 children); currently mother and child are staying with her mother in a nearby town

• FH: Husband died “from AIDS” during pregnancy; otherwise noncontributory
Treatment of TB in pregnancy

- **Controversies:**

 1. **Drug-sensitive TB**
 - CDC: Isoniazid, Rifampin, Ethambutol\(^1\)
 - Continuation phase for 7 mos (total = 9 mos)
 - WHO: Isoniazid, Rifampin, Ethambutol, Pyrazinamide\(^2\)
 - CDC: Pyrazinamide only for HIV-infected (total = 6 mos)

 2. **MDR-TB:** ??
 - Case series suggest good outcomes possible\(^3\)
 - 23/38 Peruvian women with MDR-TB cured
 - 5 died, 2 treatment failure, 8 pregnancy complications

 3. **HIV:** EFV-based ART? PI-based ART?
 - Usually given EFV-based regimen

\(^1\)CDC MMWR 2010; \(^2\)WHO 2011; \(^3\)Palacios CID 2009
FDA Categories of TB drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>FDA Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>C</td>
</tr>
<tr>
<td>Rifamycin</td>
<td>C</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>B</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>C</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>C</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>D</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>C</td>
</tr>
<tr>
<td>Capreomycin</td>
<td>C</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>C</td>
</tr>
<tr>
<td>Ethionamide/Prothionamide</td>
<td>C</td>
</tr>
<tr>
<td>Cycloserine</td>
<td>C</td>
</tr>
<tr>
<td>PAS</td>
<td>C</td>
</tr>
</tbody>
</table>

First line therapy

Second line therapy

* Bedaquiline = FDA Category B!
Follow-up and monitoring

• Consider checking LFTs monthly\(^1\)
• Breast feeding allowed if on 1\(^{st}\) line
 – **NOT** recommended with rifabutin or fluoroquinolones
 – No evidence for other medications
• If mother suspected of having TB, separate from infant\(^2\)
 – Can resume when smear negative or infant started on TB treatment
 – Baby should get INH + BCG

\(^1\)Blumberg AJRCCM 2003; \(^2\)WHO 1998
Case

• Mother initiated on HRZE
• Baby given INH x 6 months
• Referred to DOTs center closer to home for follow-up
• Recommendation for household contact tracing...
Treatment as Prevention:
The Case for Latent TB Treatment in Pregnancy
Guidelines for Preventive TB Treatment in Pregnant Women

<table>
<thead>
<tr>
<th></th>
<th>Low Burden (US CDC)</th>
<th>High Burden (WHO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimen</td>
<td>INH 300mg/d x 9 mo</td>
<td>INH 300mg/d x 6 or 36 mo</td>
</tr>
<tr>
<td></td>
<td>B6 25-50mg/d x 9 mo</td>
<td>B6 10-25mg/d x 6 or 36 mo</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INH 900mg twice weekly x 9 mo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B6 25-50mg/d x 9 mo</td>
<td></td>
</tr>
<tr>
<td>HIV-negative</td>
<td>Defer for TST+ or IGRA+ until 2-3 mo postpartum unless known recent TB contact</td>
<td>No recommendations</td>
</tr>
<tr>
<td>HIV-positive</td>
<td>Immediate treatment for TST+ or IGRA+</td>
<td>Treatment for all HIV+ without active TB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CDC and ACOG recommendations

- Delay INH treatment until postpartum except if
 - HIV+
 - Recent TB contact
 - Recent TST conversion

MMWR 2000; Targeted Tuberculin testing and treatment of latent TB infection
Postpartum follow-up of LTBI is suboptimal

<table>
<thead>
<tr>
<th>Cohort</th>
<th>SF, CA (1)</th>
<th>NY, NY (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>1331</td>
<td>730</td>
</tr>
<tr>
<td>TST+</td>
<td>32%</td>
<td>47%</td>
</tr>
<tr>
<td>Eligible for Tx</td>
<td>393</td>
<td>291</td>
</tr>
<tr>
<td>TB clinic follow-up</td>
<td>167 (47%)</td>
<td>50%</td>
</tr>
<tr>
<td>Completed Tx</td>
<td>71 (18%)</td>
<td>27 (9%)</td>
</tr>
</tbody>
</table>

Monitoring

• Prospective data lacking
• Most guidelines recommend baseline liver enzyme profiles
 – Underlying Liver disease
 – Pregnant or postpartum
 – Substantial alcohol consumption
 – Potentially hepatotoxic medications
• Monthly clinical symptom monitoring.
• Monthly monitoring of ALT likely unnecessary unless elevated baseline
Monitoring for hepatotoxicity during LTBI treatment

Identify liver risk factors.
- Chronic ethanol consumption?
- Viral hepatitis?
- Pre-existing liver disease?
- Pregnant /3 months post-partum?
- Other hepatotoxic medications?
- ALT/AST or bilirubin abnormal?
- Chronic medical conditions?

Check:
ALT (AST, bili): Baseline & q 2-4 weeks,
If biochemical monitoring desired for age >35:
baseline, then options include q 4-8 weeks, or at 1, 3, & 6 m

Baseline:
ALT > 3 X ULN

During treatment:
- ALT 5 x ULN,
- ALT 3 x ULN with nausea, vomiting, abdominal pain, jaundice, or unexplained fatigue.

Or
- Change of 2-3 x baseline, If latter ≥ 3 x ULN

Treatment option:
Rifampin x 4 m

Isoniazid rechallenge (when ALT < 2 X ULN)

Halt treatment
Challenges to LTBI screening and treatment

• Should all pregnant women be screened as TB prevalence continues to decrease in US?
• Data for IGRAs in pregnancy limited, cutoffs uncertain, no definition for conversion
• Newer shorter regimens being tested but pregnant women excluded
>40 trials listed here that are planned, ongoing or recently completed
At least 8 are Phase III trials
All exclude pregnant women

More than 13 trials of preventive therapy in HIV-infected adults
INH for 6, 9, 12, 36 months
INH+ rifampin
INH+ rifapentine
INH+ ART

All excluded pregnant women

Akolo Cochrane metanalysis 2010; Sterling NEJM 2011;
Martinson NEJM 2011; Samandari Lancet 2011; Rangaka Lancet ID 2014
Some TB trials and studies underway in pregnant women!

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Prevention</th>
</tr>
</thead>
</table>
| • IMPAACT P1026s
 – PK/Safety of 1st line TB drugs with or without ARVs
| • IMPAACT P1078
 – TB APPRISE: Phase IV double blind RCT of antepartum vs postpartum INH for HIV+ pregnant women in high TB burden settings |
| • THSIEHPO (NICHD-Chaisson)
 – PK/safety of EFV/RIF, EFV/INH | • IMPAACT P2001
 – PK/safety of INH/rifapentine weekly for 12 weeks in HIV+ and HIV- |
| • ACTG/IMPAACT PHOENIX
 MDR contact prophylaxis | • ACTG/IMPAACT PHOENIX
 MDR contact prophylaxis |
Towards Earlier Involvement of Pregnant Women in Trials of TB Drugs

May 2013 NIH sponsored workshop
Expert Consensus Statement forthcoming
Promoting joint policy and programming between TB, HIV and MCH

Key Programmatic actions:

• Integrated management of pregnancy and child health
• PMTCT
• Integrated Management of Child Illness (IMCI)
• Family planning
• TB and HIV
Filling the gaps for maternal TB

Implementation Science
- PMTCT/TB screening & IPT

Epidemiology of latent and active TB
- NICHD TSHIEPO (CROI Abs#822 Cohn)
- TIPS, India, Haiti studies,
 IMPAACT PROMISE

ARVs /ATT drug interactions
- A5388 (PK ARV, Rifampin, contraception)
- NICHD TSHIEPO

Immunology and pathogenesis of TB
- IMPAACT P1078
 NICHD Pregnancy Immune Changes/TB

MOHs Lesotho, Kenya, South Africa
- CDC, USAID, JHPIEGO, ICAP

PK, safety, and outcome studies of:
- LTBI regimens
- 1st and 2nd line TB medications

Cost-effectiveness studies for TB screening/treatment
- IMPAAACT Pregnancy studies
 P1078 (RCT of antepartum vs postpartum INH)
 P2001 (PK, safety INH/rifapentine weekly)
 P1026s (PK 1st line TB drugs and ARVs)
- A5300/P2003 PHOENIX MDR contact

CROI Abst# 1108 Shah

ARVs / ATT drug interactions

IMPAACT Pregnancy studies

Implementation Science

Epidemiology of latent and active TB

ARVs / ATT drug interactions

Cost-effectiveness studies for TB screening/treatment
Summary

- Peak incidence of TB during reproductive age
- Maternal TB associated with adverse pregnancy outcomes, maternal mortality and infant TB and mortality
- Immune and physiological changes may be of importance to screening diagnostic yield, TB drug disposition
- Best approaches of integrated TB screening and prevention needed
- Need to include pregnant women in trials of diagnostics and drugs whenever feasible
- Several studies now ongoing that will help to fill in the knowledge gap
Acknowledgements

JHU-CCGHE-BJMC India
Bob Bollinger
Jyoti Mathad (Cornell)
Vidya Mave
Nikhil Gupte
Rupak Shivakoti
Akshay Gupte
Nishi Suryavanshi
Jane McEnzie-White
Ramesh Bhosale
Renu Bharadwaj
Ajay Chandanwale
Sameer Joshi
Aarti Kinikar
Sandesh Patil
Charles Flexner
JHU Center for TB Research
Maunank Shah
Richard Chaisson
Kelly Dooley
Jonathan Golub
Wendy Cronin

NIRT/ICER
Soumya Swaminathan
Subhash Babu

UW
Sylvia Lacourse
Lisa Cramner
Grace John Stewart
David Horne

U. Colorado
Adriana Weinberg

Stellenbosch
Anneke Hesseling
Gerhard Theron

WHO
Haileyesus Getahun

ACTG and IMPAACT investigators

Women and children participants

NIAID R01AI080417, UM1AI069465, R01A1I097494
NICHD R01HD081929, R01HD074944
Fogarty D43TW000010, CFAR 1P30AI094189
Foundations: Ujala, Wyncote, Gilead
Indian Dept. of Biotechnology (DBT) and Council of Medical Research (ICMR)